This Thousand Home Challenge webinar series is brought to you by the Pacific Gas \& Electric Company's Energy Training Center \& Affordable Comfort, Inc. (ACI).

Spring 2012 Case Study Webinar Series

WEBINAR 4: Second CA Home to Meet the THC - Bergamaschi:

Focus on Plug Loads, Behavior, \& PV

May 9, 2012 10-11:30 a.m. Pacific Time

Presented by:
Facilitated by:
Respondents:

Frank Bergamaschi, Architect, San Francisco Rick Chitwood, Chitwood Energy Management, Inc., Mt Shasta Linda Wigington, Affordable Comfort, Inc.
Don Fugler, Ottawa, Ontario \& Gary Klein, Elk Grove, CA
www.1000HomeChallenge.org www.affordablecomfort.org
http://homeenergypros.lbl.gov/group/1000homechallenge

1000 Home Challenge Webinar/ETC Archives

Spring 2012 Webcasts \& Resources Posted

- http://thousandhomechallenge.com/spring-2012-case-study-webinar-series

Home Energy Pros - THC Group Webinar Discussion

- http://homeenergypros.lbl.gov/group/1000homechallenge

2010-2011 THC/ETC Webcasts

(hot water, baseload, ductless heat pumps, dense pack)

- www.1000HomeChallenge.org/resources

MARK YOUR CALENDAR!

ACI California - Sacramento, CA - June 5-6, 2012

Check out the Presenters \& Agenda http://www.acicalifornia.org
Sessions include:
> Indoor Air Quality for Standard \& Low Energy Homes
$>$ HVAC Systems for Low Energy Homes
$>$ High Performance Details for California Climates: Lessons Learned
$>$ 6th Side Debate - House to Ground: Getting to Low Energy, Healthy Homes
$>$ Wringing Out the Wastes in Hot Water Systems
> Mini-splits: Measured Performance \& Implications for California Housing Stock
$>$ Passive House in California: Toward Affordable Sustainability

And many more!

PG\&E’s 2012 Classes - Free!

Sampling of Offerings Related to
Deep Energy Reductions in Existing Homes
For the full class schedule, visit www.pge.com/energyclasses

5-11, 5-25 PG\&E's ZNE Homes Class Series (Parts 5 \& 6) - Rick Chitwood \& Ann Edminster
5-24 Deep Energy Reductions - The Thousand Home Challenge - Linda Wigington
6-6 Combined Hydronic Space \& Water - Rick Chitwood
6-12 The Passive House Approach to Zero Net Energy Homes - Graham Irwin
6-13 High Performance Residential Hot Water - Gary Klein
6-26 Go Ductless California, Try Mini-Splits! - Dick Rome

The information in this document is believed to accurately describe the technologies addressed herein and are meant to clarify and illustrate typical situations, which must be appropriately adapted to individual circumstances. These materials were prepared to be used in conjunction with a free educational program and are not intended to provide legal advice or establish legal standards of reasonable behavior. Neither Pacific Gas \& Electric (PG\&E) nor any of its employees and agents: (1) makes any written or oral warranty, expressed or implied, including but not limited to the merchantability or fitness for a particular purpose; (2) assumes any legal liability or responsibility for the accuracy or completeness of any information, apparatus, product, process, method, or policy contained herein; or (3) represents that its use would not infringe any privately owned rights, including but not limited to patents, trademarks or copyrights. Furthermore, the information, statements, representations, graphs and data presented in this report are provided by PG\&E as a service to our customers. PG\&E does not endorse products or manufacturers. Mention of any particular product or manufacturer in this course material should not be construed as an implied endorsement.

This Thousand Home Challenge webinar series is brought to you by the Pacific Gas \& Electric Company's Energy Training Center \& Affordable Comfort, Inc. (ACI).

Spring 2012 Case Study Webinar Series

WEBINAR 4: Second CA Home to Meet the THC - Bergamaschi:

 Focus on Plug Loads, Behavior, \& PV
May 9, 2012 10-11:30 a.m. Pacific Time

Presented by:
Facilitated by: Respondents:

Frank Bergamaschi, Architect, San Francisco Rick Chitwood, Chitwood Energy Management, Inc., Mt Shasta Linda Wigington, Affordable Comfort, Inc.
Don Fugler, Ottawa, Ontario \& Gary Klein, Elk Grove, CA
www.1000HomeChallenge.org www.affordablecomfort.org
http://homeenergypros.lbl.gov/group/1000homechallenge

Learning Objectives for Today

By attending this webinar, participants will

- Find out how a focus on baseload energy management helped this project meet the Thousand Home Challenge
- Learn about the energy performance results of this project
- Hear about additional opportunities to improve energy performance

Webinar Outline Today

Linda Wigington

- Intro \& Thousand Home Challenge

Frank Bergamaschi \& Rick Chitwood

- Project presentation

Gary Klein \& Don Fugler

- Comments \& Questions

Discussion \& Questions

- Post comments \& questions under "Questions" or send to (lwigington@affordablecomfort.org)

The Thousand Home Challenge

 70\%+ Deep Energy Reductions
Access \& Integrate

What Is the Thousand Home Challenge (THC)?

- A new vision for what's possible
- Integrates human \& technical solutions
- Stimulates innovation
- Builds capacity

Each household has its unique threshold of

 performance to meet or exceed.
Key Metric

Transparent \& Direct Include Occupants

Net Annual Household Site Energy

Credits/offsets: Solar \& on-site renewables Wood counts!

Thousand Home Challenge Threshold Determination

OPTION A

- 75% reduction in actual annual site energy use

OPTION B

- Climate (ZIP Code or best match weather station)
- House size (FFA), converted to surface area (5 sides)
- Detached or attached
- Electric heat allowance $=1 / 2$ fossil fuel or wood heat allowance
- Number of occupants (including partial occupancy)

THC OPTION B Household Threshold ($\mathrm{kWh} / \mathrm{yr}$. by end use - electric heat)

OPTION B Inputs: Detached; 3 in household; 2,000 ft^{2} finished floor area (FFA); electric heat

Thousand Home Challenge Everything Else Allowance

OPTION B (includes gas cooking, clothes drying)
■ 400 kWh/yr.: Base/home
■ + . $2 \mathrm{kWh} / \mathrm{yr} .: \operatorname{Perft}{ }^{2}$ (FFA)
■ + 500 kWh/yr.: Person 1 \& 2
■ + 200 kWh/yr.: Person 3+
Annual Everything Else Threshold Allowance

House Size	$\mathbf{1 , 2 0 0} \mathbf{F t}^{\mathbf{2}}$	$\mathbf{1 , 2 0 0} \mathbf{F t}^{\mathbf{2}}$	$\mathbf{3 , 6 0 0} \mathbf{F t}^{\mathbf{2}}$	$\mathbf{3 , 6 0 0} \mathbf{F t}^{\mathbf{2}}$
Occupants	$\mathbf{k W h} / \mathbf{y e a r}$	$\mathbf{k W h} /$ day	$\mathbf{k W h} / \mathbf{y e a r}$	$\mathbf{k W h} / \mathbf{\text { day }}$
$\mathbf{1}$	1,140	3.1	1,620	4.4
$\mathbf{2}$	1,640	4.5	2,120	5.8
$\mathbf{4}$	2,040	5.6	2,520	6.9

Interested in Participating in the 1000 Home Challenge?

Dates for upcoming Intro to the Thousand Home Challenge webinars:

- Thursday, May 17, 2012 10-11:30 AM (Pacific time)
- Thursday, June 14, 2012 10-11:30 AM (Pacific time)

For the THC FAQ, info on the webinars \& to register:
http://thousandhomechallenge.com/ioin-us
Free! - One-day PG\&E Class - Santa Rosa, May 24
Deep Energy Reductions - The Thousand Home Challenge www.pge.com/energyclasses

Slides Out of Synch Today?

Or Slow Internet Connection??? ecoffman@affordablecomfort.org

Content Related Questions/Comments:

Use Question Box

Link to Presentation \& Recording:

http://thousandhomechallenge.com/spring-2012-webinar4

Home Energy Pros - THC Group Webinar Discussion http://homeenergypros.lbl.gov/group/1000homechallenge

Don Fugler \& Gary Klein, Respondents

Don Fugler was trained as a mechanical engineer and spent 25 years doing housing research for Canada Mortgage and Housing Corporation (CMHC). One of his last projects was the performance monitoring of the CMHC EQuilibrium homes, houses designed to be net zero and healthy. He retired from CMHC in 2011, and currently undertakes contract research into ventilation, IAQ, energy retrofitting, and other issues.

Gary Klein has been intimately involved in energy efficiency and renewable energy since 1973. His firm, Affiliated International Management LLC, provides consulting on sustainability through their international team of affiliates. At present, the focus is on water/energy/carbon footprint issues, with a particular emphasis on hot water.

Presenters: Frank Bergamaschi

\& Rick Chitwood

Frank Bergamaschi is a registered California architect and LEED accredited professional. He has practiced in San Francisco since 1988. He specializes in residential design, with an emphasis on energy conservation and sustainability.

Rick Chitwood has been a longtime building performance contractor, even before it was called that, and even owned a blower door in the 1980s. He spends most of his time teaching for the California Building Performance Contractors Association, doing research, and helping with the updates to the California energy code.

Second home in California to officially meet the
Thousand Home Challenge

One architect's circuitous voyage to the Thousand Home Challenge

The Bergamaschi/soofoo Residerce

Description

- Finished in 1999
- Two story, 3,200 ft²
- 10' ceilings
- Moderately Insulated
- Raised floor
- Two conditioning zones
- Gas furnaces
- Gas hot water
- Gas kitchen
- Construction costs $\$ 135 / \mathrm{ft}^{2}$
- Mild climate zone
- Designed by me

The Bergamaschi/soofoo Reesiderce

The Bergiamaschi/soofoo Residerce

The Bergianaschi/Soofoo Residerce

In 2006 We Decide to $\mathcal{A d d}$ Solar PV

Here is where we started:~ $650 \mathrm{kWh} / \mathrm{mo}$.; ~\$135/mo.

Goal - to offset electric portion of home's energy use

In 2006 We Decide to $\mathcal{A d d}$ Solar PV УIKE®!

First estimate comes back at \$44K for a 6 kW system

Goal - to offset electric portion of home's energy use

Accountirg for Osage

Lights	420 watts	
TV \& cable box	250 watts	
Laptop	30 watts	
Desktop	100 watts	But that only adds up to 236.6 kWh
Refrigerator	60 watts	
Total	$\mathbf{8 6 0}$ watts	And our usage averaged $\mathbf{6 6 0} \mathbf{k W h} /$ month

Accounting for Usege

Accounting for Usage:

1 load of laundry every day adds	7.9 kWh
1 load of dishes every day adds	9.3 kWh
New Total	$\mathbf{2 5 3 . 9} \mathbf{~ k W h}$

Accountivg for Osage

Accounting for Usage:

1 load of laundry every occupied hour	61.5 kWh
1 load of dishes every occupied hour	72.0 kWh
New Total	$\mathbf{3 7 0 . 1} \mathbf{~ k W h}$

Accounting for Osage

Accounting for usage:

1 load of laundry every hour 24/7
1 load of dishes every hour 24/7
New Total
190.5 kWh
223.2 kWh 650.3 kWh

Where is all this electricity going?

Measuritog Pbuǵ Looads é Whole House Fbectricity Ose

Kill-A-Watt

The Energy Detective (TED)

Dart I: Define Fbectricity Elows

1. Examine historical utility records
2. Map electrical system by circuit
3. Put home in "sleep state"
4. Measure "snapshot"
current flows by circuit
5. Allocate usage beyond "sleep state" by estimation

Part I: Define Ebectricity Elows

1. Examine historical utility records
2. Map electrical system by circuit
3. Put home in "sleep state"
4. Measure "snapshot" current flows by circuit
5. Allocate usage beyond "sleep state" by estimation

Dert I: Define Ebectricity Elows

1. Examine historical utility records
2. Map electrical system by circuit
3. Put home in "sleep state"
4. Measure "snapshot" current flows by circuit

Do some simple measuring
5. Allocate usage beyond "sleep state" by estimation

Dart I: Define Fbectricity Elows

1. Examine historical utility records
2. Map electrical system by circuit
3. Put home in "sleep state"
4. Measure "snapshot" current flows by circuit
5. Allocate usage beyond "sleep state" by estimation

Papt I: Define Electricity Elows

1. Examine historical utility records
2. Map electrical system by circuit
3. Put home in "sleep state"
4. Measure "snapshot" current flows by circuit
5. Allocate usage beyond "sleep state" by estimation

For a .pdf copy email: fberg@FABArchitects.com

Define Electricity Elows

Map electrical system by circuit Put home in "sleep state" current flows by circuit

@afety Martter!!

Do not do this yourself.

PG\&E does not \& will not endorse pper any procedure not performed by a licensed electrician!

Sefety Matters!

Do not do this yourself.

PG\&E does not \& will not endorse pped any procedure not performed by a licensed electrician!

Buîbling a spreadshect to Mlbocate "Spqpshot" Cureent Elows by Circuit \& Tigs

Panel A Unadjusted Ampheres

\#	$\begin{aligned} & \text { 올 } \\ & \text { 흔 } \\ & \text {.윽 } \\ & \hline \end{aligned}$		$\frac{\frac{0}{0}}{\frac{0}{1}}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \text { D } \\ & =\overline{=} \\ & =\overline{=} \\ & \hline 0 \end{aligned}$		H	Contributing Devices
1							Spare
3							Spare
5		0.29					Electronics stack (Family Room, music accessories)
7 a		0.51					Electronics stack (Family Room TV stack)
7b				0.09			Basement Furnace
9a				0.04			Includes tankless water heater
9b				0.26			Telephone panel, wireless router etc.
11					0.05		Microwave
13a				0.02			Vaccum system
13b	0.06						Entry lights
15a		0.31					Electronics stack (Family room computer, phone)
15b							Garage lights
17							Powder room
19			0.17				Includes garage door operators
2							Dishwasher/Disposer
4							Spare
6	0.06						Family Room Lights
8							Family Room receptacles
10					0.12		Countertop appliances/misc.
12	0.07						Living Room lights
14					0.72		Refrigerator
16							Living Room receptacles
18			0.09				Includes hood and range
20					0.39		Countertop appliances/chargers

List the Contribetilag Devices

Panel A
Unadjusted
Ampheres

			$\begin{aligned} & \frac{9}{0} \\ & \frac{0}{1} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { O} \\ & \hline \overline{=} \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$		$\stackrel{0}{0}$	Contributing Devices
1							Spare
3							Spare
5		0.29					Electronics stack (Family Room, music accessories)
7 a		0.51					Electronics stack (Family Room TV stack)
7b				0.09			Basement Furnace
9 a				0.04			Includes tankless water heater
9b				0.26			Telephone panel, wireless router etc.
11					0.05		Microwave
13a				0.02			Vaccum system
13b	0.06						Entry lights
15a		0.31					Electronics stack (Family room computer, phone)
15b							Garage lights
17							Powder room
19			0.17				Includes garage door operators
2							Dishwasher/Disposer
4							Spare
6	0.06						Family Room Lights
8							Family Room receptacles
10					0.12		Countertop appliances/misc.
12	0.07						Living Room lights
14					0.72		Refrigerator
16							Living Room receptacles
18			0.09				Includes hood and range
20					0.39		Countertop appliances/chargers

Organize Dreakout by Eubction

Panel A
Unadjusted
Ampheres

$\begin{aligned} & \text { \# } \\ & \text { 黄 } \\ & \text { 言 } \\ & \hline \end{aligned}$	읓 윽		$\frac{0}{\frac{0}{1}}$	$\begin{aligned} & \text { O } \\ & \text { क } \\ & \text { O} \\ & =\overline{0} \\ & =\overline{=} \end{aligned}$		$\underbrace{0}$	Contributing Devices
1							Spare
3							Spare
5		0.29					Electronics stack (Family Room, music accessories)
7a		0.51					Electronics stack (Family Room TV stack)
7b				0.09			Basement Furnace
9a				0.04			Includes tankless water heater
9b				0.26			Telephone panel, wireless router etc.
11					0.05		Microwave
13a				0.02			Vaccum system
13b	0.06						Entry lights
15a		0.31					Electronics stack (Family room computer, phone)
15b							Garage lights
17							Powder room
19			0.17				Includes garage door operators
2							Dishwasher/Disposer
4							Spare
6	0.06						Family Room Lights
8							Family Room receptacles
10					0.12		Countertop appliances/misc.
12	0.07						Living Room lights
14					0.72		Refrigerator
16							Living Room receptacles
18			0.09				Includes hood and range
20					0.39		Countertop appliances/chargers

Orgabize Breakout by Eunction

Panel A
Unadjusted
Ampheres

$\begin{aligned} & \text { \# } \\ & \text { E } \\ & \text { 늘 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { 흘 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { n } \\ & \text { ion } \\ & \text { Oै } \end{aligned}$			-	Contributing Devices
1							Spare
3							Spare
5		0.29					Electronics stack (Family Room, music accessories)
78		0.51					E ectronics stack (Family Room TV stack)
76				0.09			B asement Furnace
92				0.04			In cludes tankless water heater
9 k				0.26			T lephone panel, wireless router etc.
11					0.05		M crowave
13,				0.02			V accum system
13	0.06						E try lights
15		0.31					E ectronics stack (Family room computer, phone)
15							G arage lights
17							P owder room
19			0.17				Includes garage door operators
2							D shwasher/Disposer
4							S pare
6	0.06						F mily Room Lights
8							F mily Room receptacles
10					0.12		C buntertop appliances/misc.
12	0.07						Li ing Room lights
14					0.72		R efrigerator
16							Li ing Room receptacles
18			0.09				11 cludes hood and range
20					0.39		Countertop appliances/chargers

Most Cilecuits Osed Electricicity 24/6 !!

Panel A
Unadjusted
Ampheres

$\begin{aligned} & \text { \# } \\ & \text { U } \\ & \text { 응 } \end{aligned}$			$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{1} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { © } \\ & \text { O} \\ & =\overline{\bar{O}} \\ & \overline{\mathrm{D}} \end{aligned}$		$\underbrace{0,0}_{i}$	Contributing Devices
1							Spare
3							Spare
5		0.29					Electronics stack (Family Room, music accessories)
75		0.51					E ectronics stack (Family Room TV stack)
7b				0.09			B asement Furnace
98				0.04			In cludes tankless water heater
9b				0.26			T lephone panel, wireless router etc.
11					0.05		M crowave
13				0.02			V accum system
13	0.06						E try lights
15		0.31					E ectronics stack (Family room computer, phone)
15							G arage lights
17							P pwder room
19			0.17				In cludes garage door operators
2							D shwasher/Disposer
4							S pare
6	0.06						F amily Room Lights
8							F imily Room receptacles
10					0.12		C buntertop appliances/misc.
12	0.07						Li fing Room lights
14					0.72		R frigerator
16							Li jing Room receptacles
18			0.09				Ir cludes hood and range
20					0.39		Countertop appliances/chargers

Orgabize Breakout by Eunction

	\# \# 흥	$\begin{aligned} & \text { 은 } \\ & \text { 言 } \end{aligned}$		$\begin{aligned} & \text { M } \\ & \frac{0}{\mathbf{0}} \\ & 0 \end{aligned}$	0 0 0 O $=0$		$\stackrel{0}{i}$	Contributing Devices
Panel A	1							Spare
Unadjusted	2							Sparo
Ampheres	5		0.29					Electronics stack (Family Room, music accessories)
	7		0.64					Elounonioustaut (Faning Pooni TV stady
	7b				0.09			Basement Furnace
	9 a				0.04			Includes tankless water heater
	9b				0.26			Telephone panel, wireless router etc.
	11					0.05		Microwave
	13a				0.02			Vaccum system
	13b	0.06						Entry lights
	15a		0.31					Electronics stack (Family room computer, phone)
	15b							Garage lights
	17							Powder room
	19			0.17				Includes garage door operators
	2							Dishwasher/Disposer
	4							Spare
	6	0.06						Family Room Lights
	8							Family Room receptacles
	10					0.12		Countertop appliances/misc.
	12	0.07						Living Room lights
	14					0.72		Refrigerator
	16							Living Room receptacles
	18			0.09				Includes hood and range
	20					0.39		Countertop appliances/chargers

End-use Breakout

(Projected with Adjustment)

	Lighting	Entertain.	Outlets	Building Svc	Appliances	Misc
Passive Amps	0.28	1.11	1.00	0.59	1.28	0.01
Passive Watts	33.96	132.84	119.40	71.04	154.08	1.44
Active Adjustment	NA	0.50	0.50	0.50	0.50	0.50
Active Watts	145.42	66.42	59.70	35.52	77.04	0.72
Proj. Monthly kW hours	130.94	145.46	130.74	77.79	168.72	1.58
Total projected kWh/month						655.23

End-use Breakout

(Projected with Adjustment)

Lighting Entertain. Outlets Building Svc Appliances Misc

Passive Amps	0.28	1.11	1.00	0.59	1.28	0.01
Passive Watts	33.96	132.84	119.40	71.04	154.08	1.44
Active Adjustment	NA	0.50	0.50	0.50	0.50	0.50
Active Watts	145.42	66.42	59.70	35.52	77.04	0.72
Proj. Monthly kW hours	130.94	145.46	130.74	77.79	168.72	1.58
Total projected kWh/month						655.23

End-use Breakout

(Projected with Adjustment)

Lighting Entertain. Outlets Building Svc Appliances Misc

Passive Amps	0.28	1.11	1.00	0.59	1.28	0.01
Passive Watts	33.96	132.84	119.40	71.04	154.08	1.44
Active Adjustment	NA	0.50	0.50	0.50	0.50	0.50
Active Watts	145.42	66.42	59.70	35.52	77.04	0.72
Proj. Monthly kW hours	130.94	145.46	130.74	77.79	168.72	1.58
Total projected kWh/month						655.23

End-use Breakout

(Projected with Adjustment)

Lighting Entertain. Outlets Building Svc Appliances Misc

Passive Amps	0.28	1.11	1.00	0.59	1.28	0.01
Passive Watts	33.96	132.84	119.40	71.04	154.08	1.44
Active Adjustment	NA	0.50	0.50	0.50	0.50	0.50
Active Watts	145.42	66.42	59.70	35.52	77.04	0.72
Proj. Monthly kW hours	130.94	145.46	130.74	77.79	168.72	1.58
Total projected kWh/month						655.23

End-use Breakout (Projected)

pABTi II: Abalvsis

1. Evaluate usage for conservation potential

2. Implement conservation strategies

3. Verify with new utility records

PARİ II: Usíd ${ }^{\text {b }}$ What We dNow Kıow

1. Evaluate usage for conservation potential
2. Implement conservation strategies
3. Verify with new utility records

Spreadsheet B				kWh					
	Wattage		Daily	Monthly				Monthly	
	savings	Total	Hours of	Potential	Cost			Utility	
Action	per unit	units	Operation	savings	per unit*		Total cost	Savings	ROI
Switch Electronics stack (Family Room TV stack)	61.1	1	22	40.9	\$ 10.00	\$	10.00	\$ 9.28	1113.2\%
Switch furnace \#1	10.3	1	12	3.8	\$ 1.00	\$	1.00	\$ 0.85	1025.9\%
	50.6		24	6.	10.0		000	0.30	1006.009
Switch Electronics stack (Family Room, music accessories)	34.9	1	24	25.5	10.00	\$	10.00	\$ 5.79	694.3\%
Switutituriace +2	. 9		12	2.1	+ 1.00	$\stackrel{+}{ }$	1.00	0.49	504.5\%
Switch Electronics stack (Family room computer)	30.8	1	22	20.6	\$ 10.00	\$	10.00	\$ 4.68	562.0\%
Switch Electronics stack 4 (master bedroom TV stack)	26.0	1	24	19.0	\$ 10.00	\$	10.00	\$ 4.31	517.7\%
Replace 60W incandescent with 10W CFL (Primary lighting fixtures)	50.0	9	6	82.1	\$ 5.00	\$	45.00	\$ 18.64	497.0\%
Switch Electronics stack 5 (Guest bedroom TV stack)	17.9	1	24	13.0	\$ 10.00	\$	10.00	\$ 2.96	355.5\%
Switch microwave	6.4	1	24	4.6	\$ 10.00	\$	10.00	\$ 1.05	126.4\%
Replace 100W incandescent with 18W CFL (occasionally used fixtures)	82.0	10	0.25	6.2	\$ 5.00	\$	50.00	\$ 1.42	34.0\%
Remove X10 Switch	3.0	12	24	26.3	\$ 25.00	\$	300.00	\$ 5.96	23.9\%
Remove X10 Receptacle	2.2	7	24	11.0	\$ 25.00	\$	175.00	\$ 2.51	17.2\%
Switch Garage door openers	6.5	2	12	4.7	50.00	\$	100.00	\$ 1.08	12.9\%
Install 3.3 KW solar PV system (with rebate and tax credit)		1		400.0	\$ 16,200.00	\$	16,200.00	\$ 90.83	6.7\%
Install 3.3 KW solar PV system (without rebate)		1		400.0	\$ 26,000.00	\$	26,000.00	\$ 90.83	4.2\%
*CFL conversion costs do not include replacement of some halogen fixtures to receive CFLs			Total						
*Solar system cost estimated									

PARİ II: Usíd ${ }^{\text {b }}$ What We dNow Kıow

1. Evaluate usage for conservation potential

2. Implement conservation strategies
3. Verify with new utility records

PARİ II: Usíd ${ }^{\text {b }}$ What We dNow Kıow

1. Evaluate usage for conservation potential

2. Implement conservation strategies
3. Verify with new utility records

Physiceal Changes

Halogen luminaire conversion

Do not do this yourself. PG\&E does not \& will not endorse any procedure not performed by a licensed electrician!

Additional Physical Changes

Halogen pendant

Remove automated switches

Remove automated receptacles

Add switch leg to garage door operator

Remove electronic Use mechanical timer switches
 timer switches

Add power strips

Installed line drying 37

Additional Changes

Behavioral Changes

- Remember to use the physical changes (e.g., power strips)
- Adapt to the minor inconveniences
- (powering up a computer to log onto the web)

Concurrent Changes Not Related to PV

- Dress appropriately to the weather/season
- Let temperature of the house float

Other

- Replace tank style water heater with tankless

2006-07 Conparison kWh \& Cost

2006-07 Comparison kWh \& Cost

Spreadsheet C

July August September October November December

Average Savings

Kilowatt hours		Total Electricity Charges			
2006	2007		2006		007
705	347	\$	145.48	\$	44.76
644	354	\$	136.13	\$	50.22
673	378	\$	140.26	\$	54.83
648	375	\$	134.35	\$	51.59
657	333	\$	135.36	\$	43.61
639	351	\$	117.09	\$	44.33
661	356	\$	134.78	\$	48.22
	46.1\%				64.2\%

Depth of the Problem

Why is this so high?

Fmbedded 24/6 Leaks

The High Cost of Convenience

- Furnaces
- Water heaters
- Phone systems
- Intercoms
- Sprinkler systems
- Lighting controls
- Gate operators
- Computers
- Printers
- Scanners
- Copiers
- Fax machines
- Televisions
- Appliances
- Garage door operators
- Air fresheners
- Vacuum systems
- Electric toothbrushes
- Coffee makers
- Automated receptacles
- Ground fault receptacles
- Smoke detectors
- Security systems
- Conveying systems
- Internet access
- Cable boxes
- Stereo systems
- Clock radios
- Ionizers
- Doorbells
- Battery chargers
- Timers
- Microwave ovens
- Toasters

Cycling Components

- Refrigerators
- Freezers
- Terrariums
- Aquariums
- Spas

What is One Leak Worth??

24 hours $x=1$ hour x

What Is This Leak Worth??

288 watt unused stack =

Plus This Maュy

plus This ${ }^{\text {Mapay }}$ Aggib

 $\operatorname{cosec}+\operatorname{ectex}$

∞

Cll ate nell ate ater ate ne

Plus This M, Mpy Yet \mathcal{A} giail
$+\infty$
$+\infty$
$+\infty$
$+\infty$
$+\infty$
$+\infty$
$+\infty$
$+\infty$
plus This Many - EOR 1 Hour

Present otatus

Last annual true-up period: 713 excess kWh

- Same period: ~140 therms natural gas
- We use the furnace infrequently, AC virtually never
- Biggest users: refrigerator, cable box, router, aquaria
- Other leaks still in system:
- Water heater
- Furnaces (cycled seasonally)
- Alarm system
- Phone system/answering machine

- Central vacuum
- Smoke detectors

Present Status

Lessons Learned

- Fully investigate specified items
- Be suspicious of manufacturers' claims
- Switch on the line voltage side
- Use mechanical/manual switching
- Be relentless about reducing losses
- Keep systems simple

- Demand better energy performance

Total Anneal Fonergy Use Compared to IHPC Threshold OPTION B ($k=W h / \mathrm{ye}$)

OPTION B Assumptions: 3,200 f² FFA; 2,726 HDD Oakland, CA weather station; 3 occupants; gas heat; single-family detached home

Iotal Annual Energy Use Compreed to IHC Threshold OPTION" B ($k=\mathrm{Wh} / \mathrm{ye}$)

NOTE: 2010-11 Gas Baseload = ~ 90 therms; Gas heat ~ 60 therms OPTION B Assumptions: 3,200 f² FFA; 2,726 HDD Oakland, CA weather station; 3 occupants; gas heat; single-family detached home

2010-11 Actual Use Efficiency Only (in kWh/year)

2010-11 Summary (in kWh) Total use: 8,746
PV production : 4,430 Net: 4,316

■ Gas Heating
■ Gas Baseload (DHW/Cook/Dryer)

- Everything Else

NOTE: 1 therm = ~ 30 kWh

The Bergamaschi/@oofoo Residerce

The Bergamaschi/soofoo Reesiderce

The Bergamaschi/@oofoo Residerce

Mount Shasta Degree Days

Base 75 F
9,606
Base $55^{\circ} \mathrm{F}$ 3,670
62\% Reduction

Heating Degrees Days (HDD) Depends on Assumptions (Base 65, 60, or 55)

...and the HVAC \&

insulation guys don't need
to do anything to meet the Thousand Home Challenge?
rick@chitwoodenergy.com

Heating \& Cooling

Crawl Space System 80,000 Btu/H (90+ AFUE)
2.5 tons AC (SEER 12)

Floor supply grilles
Ducts R-4.2

Attic System 80,000 Btu/H (80\% AFUE) 3.0 tons AC (SEER 12)

Ceiling supply grilles Ducts R-4.2

Insulation \& Enclosure

Ceiling R-30
Shafts R-13 $1^{\text {st }}$ Floor Walls R-19 $2^{\text {nd }}$ Floor Walls R-13 Floor R-30
Windows, Double Clear

Water Heating

Natural Gas Tankless

Other Gas Appliances:

- Clothes dryer
- Cooking

Can Comfort Be Enhanced with Efficiency Improvements?

ASHRAE STD 55 (Comfort)
 0% to 85% RH \& $66^{\circ} \mathrm{F}$ to $83^{\circ} \mathrm{F}$

Quantifying the Opportunities

Site (Oakland, CA) Monthly Average Temperatures

1. Duct Leakage (H/C)
2. Duct Conduction (H/C)
3. Refrigerant Charge (C/HP)
4. Low Airflow (C/HP Mostly)
5. Over-sizing (H/C)
6. Room-to-Room Air Delivery (H/C)
7. Equipment Efficiency (H/C)
8. Equipment Defects (H/C)

Duct Leakage

Duct leakage downstairs 254 CFM $_{25}$
(199 CFM 25 to outside, 36\% of airflow)

Duct leakage upstairs 261 CFM $_{25}$
(258 CFM 25 to outside)

Duct Conductive Losses

1. R-4.2 duct insulation
2. All ducts in unconditioned attic \& crawl space
3. Delivery temperatures varied from $140^{\circ} \mathrm{F}$ to $115^{\circ} \mathrm{F}$ due to duct length
4. 14 supply grilles on the downstairs system
 (3 supply grilles would have been better)

Low Airflow

1. Low airflow impacts air conditioners the most, but also impacts furnaces
2. The airflow was so low that the furnace cycled off on high temperature limit
3. System static pressure was 1.0" WC (or more than double what it should be)

Over-sizing

1. Two 80 kBtuH furnaces
2. 5.5 tons of cooling
3. Proper sizing would provide long run times at design conditions
4. Over-sizing on this house may be good

Room Air Delivery

1. Delivery velocities were too low for good room air mixing
2. 4 " $x 14$ " grilles used with an average airflow of 50 CFM: this yields velocities of less than 300 feet per minute (FPM), or less than half of the desired velocity

$1^{\text {st }}$ Floor Heating Efficiency

1. The furnace efficiency was 95\% (AFUE)
2. When the Btus actually delivered to the house were measured, we found the NET efficiency to be only 53\%

Envelope Performance Factors

1. Infiltration

2. Insulation Levels
3. Insulation Performance
4. Glazing Performance

Infiltration

Blower door test result:

2,674 CFM $_{50}$
$5.0 \mathrm{ACH}_{50}$
<1 CFM $_{50}$ per ft^{2}
(of floor area)

Insulation Performance

1. Insulation performance was found to be industry standard (not very good)
2. Insulation not in contact with its air barrier

Infiltration \& Insulation Opportunities

Whole House Approach

- Baseload Electrical Consumption (1)
- Envelope:
- Air Infiltration (2)
- Doors \& Windows (3)
- Insulation Performance (4)
- HVAC:
- Distribution System (5)
- Equipment Efficiency (6)
- Water Heating \& Distribution (7)
- Renewables (8)

Whole House Approach

Baseload Electrical Consumption (1)

- Envelope:
- Air Infiltration (2)
- Doors and Windows (3)
- Insulation Performance (4)
- HVAC:
- Distribution System (5)
- Equipment Efficiency (6)
- Water Heating \& Distribution (7)

Renewables (8)

Whole House Approach
 Description

"Identify \& quantify the opportunity for improvement in every category."

- Frank's project encompassed 2.5 out of our 8 categories of measures, hardly what we would call "whole house"
- ...but added one powerful force: committed
occupants

Can Frank's Approach Work in Other States or Even Other Parts of California?

YES, IT CAN

- Occupants have tremendous control over their energy usage
- It's easy to put on a sweater
- Baseload electrical consumption is typically the largest category of energy consumption
- Renewables are getting less expensive

NO, IT CAN’T

- This site has a mild climate
- This site has a simple \& efficient architectural design
- The envelope on this house is pretty good
- "Typical" occupants won't sacrifice this much comfort
- "Typical" occupants aren't this motivated

Conclusion (from the HVAC \& insulation guy)

The success of this project could be much less "occupant dependent" if HVAC \& insulation opportunities were pursued. Some of these include:
$-1^{\text {st }}$ floor HVAC system improvement, i.e., airflow, distribution efficiency, \& room air delivery

- Air sealing opportunities
- Attic \& crawl space insulation improvement

$1^{\text {st }}$ Floor HVAC System Improvement

1. Keep existing over-sized furnace \& AC
2. Increase airflow by adding a second return \& increasing the supply duct sizes
3. R-8.0 duct, half of the duct surface area (eliminate at least half of the supplies), \& no duct leakage
4. New nondiffusing supply grilles for better room air mixing (delivering at 600 FPM)

Attic \& Crawl Space Air Sealing Opportunities

1. Expose leakage sites in the floor assembly \& the ceiling assembly
2. Use gun foam \& high temperature caulk to seal all of the penetrations
3. Goal: Reduce infiltration by 50% (to $2.5 \mathrm{ACH}_{50}$)

Attic \& Crawl Space Insulation Improvement

1. After air sealing, reinstall all fiberglass batts to be in contact with their air barrier (plywood subfloor or ceiling drywall)
2. Properly install skylight batts \& wrap skylights with PFSK duct wrap
3. Dam attic hatch, equipment platform, \& fireplace flues
4. Install R-19 loose fill cellulose in attic over existing insulation \& ducts
